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An asymptotic method of solving certain problems of optimal control of motion 
of the standard type systems with rotating phase is developed. It is assumed that 

the controls enter only the small perturbing terms,and that the fixed time inter- 
val over which the process is being considered is long enough to ensure that the 
slow variables change essentially. Assuming also that the system and the cont- 
rols satisfy the necessary requirements of smoothness, the method of canonical 
averaging [l] is used to construct a scheme for deriving a simplified boundary 
value problem of the maximum principle, The structure of the set of solutions 

of the boundary value problem is investigated and a scheme for choosing the op- 

timal solution with the given degree of accuracy in the small parameter is 

worked out. The validity of the approximate method of solving the boundary 

value problem is proved. The method suggested in [2] for constructing a solu- 

tion in the first approximation for similar problems of optimal control is deve- 

loped. 

1. Formulation of the problem of optlmrl control for the rtrn- 
dord ayrtema. We consider a controlled system of standard type with a rotating phase 

I3 a’ = &f@, 9, u, 4, a(t,) = “0 (1. 1) 
9,’ = 0 (0) + EJ’ (a, 9, u, 4, *(to) = q,, 

Here a = (a,, . . ., a,> is the slow vector, $ is the scalar rotating phase, u E U 

is the control vector of dimension m, U is the fixed convex set, 1 8 1 < EO is a small 
numerical parameter ; to, a, and q. are the initial parameters. The functions f and 

E are assumed to be .%-periodic in ‘Ic) and differentiable a sufficient number of times 

with respect to all arguments. The control performance criterion is taken in the formof 
a smooth function of the value of the variable a at the fixed i.nstant of time t = T, 
where T - cm1 [2]. Since the dimension n of the vector a is arbitrary, we can assume 

that the minimizing functional J has the form 

J=a,(T)-+min us U (1.2) 

We require to construct a solution of the optimal control problem (1. l), (1.2) to an ar- 
bitrary,predetermined accuracy in the powers of the small parameter. The solution is 
based on the necessary conditions of the maximum principle [3]. We construct the ad- 

missible solutions of the two-point problem to within the prescribed accuracy with res- 
pect to the slow variables and the functional, and from amongst these we choose the op- 
timal solution [2]. 

The boundary value problem consists of solving simultaneously the equations (1.1) and 
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Approximate solution of nonlinear problem 971 

a system for the conjugate variables p and q with the following boundary conditions at 
t=l p’ = - dH I da = - dq - E Ia (pf) I da -k qaF I aa] 

q’ = - aH I a$ = - E [a (pf) I ag + qaF I 41 

(1.3) 

p (T) - PT = (-1, 0, . . ., o), q (T) = 0 (1.4) 

Here H is the Hamilton function of the problem [3] 

H = 1 (pj) 1- q (0 ?- EF), @f) = plfl + . . . + Pnfn (1.5) 

The control U* is chosen from the condition of maximum of the function H with res- 

pect to u , with the remaining arguments fixed 

u* = y (a, 9, P, q, 4 (1.6) 
We assume that the sufficiently smooth function V can be determined uniquely and is 
2n -periodic in I#. 

The system of equations (1. I), (1.3) is not standard in the sense of [Z], as p* does not 
vanish identically when 8 = 0. However, we can use the approach employed in [2] to 

reduce this system to the standard form of 2n + 1 equations in a, I# and p, since the 
variable q IV E can be uniquely determined from the condition of constancy in the func- 
tion H 

HIV = &?I - - &AI (U (T), ‘II) (T), pT, 0, E), h - 1 (1.7) 

q = aQ (h, a, $9 p, a) = ew-r [h - (PA,)] {I - Eo-1 [(PaA / aq), + 
Y’,]} -t- ES... 

Here A and Y denote the functions f and F containing the expressions for u given 

by (1.6) and the subscript D indicates that the corresponding value of E is zero. 
Thus the solution of the initial boundary value problem is reduced to solving the stan- 

dard system with a rotating phase for a, $ and p , after which the parameter h and the 
variable q can be found from the relations (1.7). 

The proof of the validity of the method of averaging the approximate solution of the 

standard system with a rotating phase is given in [l] for the initial conditions stated above 
and h - 1. Sects. 2 and 3 of that paper deal with the problems of constructing the ap- 

proximate solution of the boundary value problem, and determining the parameter h 

with the required accuracy. The controlled systems with a small parameter and the sys- 
tems with small controls acting over short and asymptotically long intervals of time , 
were investigated in [4 - 111, 

2. Conrtructfng an avrrrgad canonical byrtem of equation& 
The order of the system can be further reduced by dividing by 9 , and this converts it 

to the standard form [l]. When the value of h is fixed, the resulting nonautonomous 
system of 2n equations is canonical, and its Hamilton function is - EQ (h, a, *P, Pt 8) 
PI 

da / d$ = eA (o -t- &Y)-’ = - E dQ / aP (2.1) 

dp / d$ = me {o’Q -b [a (PA) / aU i- e Qa\E’ / ad (0 $ ey)-’ = EaQ / aa 

Here the rotating phase is regarded as an independent variable, while the initial and 
boundary conditions for a and p as functions of 9 have the form (1. l), (1.4). The va- 
lue of &is known, and $T can be found from the relation 
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t-to” 
.d$' 

Tq-a-+ I/$ = I$ (T), T -- to - Le-‘, L - 1 (2.2) 

We further assume that the solution of the boundary value problem for the system 

(2. l), with h N 1 and $r - a-1, given, belonging to the admissible domain for all 

0 ( 1 E ( < E,, exists, and is unique. Let us apply the methods of canonical averaging 

over the variable $ [l, 9, 131 to the system (2. 1). We perform the change of the initial 
variables u and p to the new (averaged) variables E and rl with any prescribed degree 

of accuracy in e 
E = a -1. E da I dq, p=rl+Ea~/aa (2.3) 

in such a manner, that the equations remain canonical, and the new Hamiltonian eR 

does not contain the independent variable 9 

@ 1 d$ = caR I aq, dr, / (111, = - &aR / a!, R = R (h,:,~) (2.4) 

The generating function periodic in I# which is nearly equal to the identity a~ $ EU 

(h, a, I#, ‘1, E) and the averaged Hamiltonian, can be found with any prescribed degree 

of accuracy in e, determined by the smoothness of the system (2. l), in the form 

(J = us + ea, + . . . -t_ ekgk -t . . ., R = R, -t- eR, +. . . (2.5) 

+ EisRk + . . . 

from the following partial differential equations [9 - 131: 

ao / a* - Q (h, U, *, q + &a(3 / aa, e)=R (h, a + da / aq, 7, 4 (2.6) 

Substituting the expressions (2.5) into (2.6) and equating the coefficients of like powers 
of e yields, consecutively, the unknown functions gJi and Rt (i > 0) 

Ri (h, Ev q) = - <Qi> (‘3 ES Y) (2.7) 
2n 

The square brackets in (2. ‘7) indicate the averaging over $ The functions Qr are de- 

termined, at each step, in terms of known Qo, R,, . . u , Qi-1, Ri_l. For example, 
we have 

Qo = Q(k a, '/',t q, o), QI= (+I$)+ (s)$+(Fj% (2.8) 

Qz=+($$)+($--)2++($)($$)"+(%)$++ 

where the expressions contained in the parentheses of the type (uQ i UC), (011, / tic) 
indicate that the fu:lctions in question are calculated at E = 0. 

The system (2.4) is appreciably simpler to integrate, since it is canonical and the func- 

tion K is independent of I$. Consequently K (/L, t, q, E) =-= const and, using this in- 
tegral to eliminate any of the variables, we obtain an autonomous system the order of 
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which can be again reduced by unity, In the concrete cases the above transformations 
enable us to simplify the analytic construction and the investigation of the solution of 
the boundary value problem. The system (2.4) is suitable for numerical computations, 

as we can introduce a slow independent variable 0 = e1c) and construct the solution on 

a relatively short interval: 6 E [@a, 6,] where 8, = ~$0 - &and fjT = EI#T - 1. 

3. Approximate rolution of the problem of optimal control. 
Using the formulas (2.7) and (2.8), we write the averaged system of the ( k + 1 )-th 

approximation 
Q(i,,l) -= d?k+l) 

d0 --xi-=- 
i=o i=n 

(3.1) 

in which the ( FE + ‘l)-th and higher order terms in E are disregarded. It follows that, 

generally speaking Cl], 1 E - &k+l~ \ - gk+‘, 1 q - q(k+l) 1 - ek+l for 8 - 1. 
1”. A general solution of the system (3.1) can be constructed with an error of the 

order of ek+i , using the solution of the first approximation system, i.e. with k = 0. 
A higher approximate solution of the initial boundary value problem is found more suit- 
able if we construct a general solution of the averaged two-point problem (3.1) satisfy- 

ing the conditions E(k+l) (0,’ = cc and ~(,,+i) (0,) = c,, where Cc and C, are cer- 
tain arbitrary constants belonging to the e-neighborhood of the points a, and pT, respe.c- 
tively. We further assume that such a solution of the generating system, i.e. of the first 

approximation system, is known : 

E(l) = t(l) (0, OT, h, cc, cq), q(l) = q(l) (0, h’s h % ‘1,) (3.2) 

The dependence of the known parameter 6, is not substantial, hence it is not shown here, 

The solution sought has the following form in the interval 8 - 1 [1]: 

k k 

&&+I) = &I) + 7 Et&(i), 
i=l 

q(k+l) = q(l) + x ‘%(i) 
i=l 

(3.3) 

The unknown functions S&i and 6?kr; must satisfy the conditions 

&kr, (0,) = 0 , and are determined, successively, from the equations 
6&,, &I,) = 

(3.4) 

Here the expressions of the type (d2R, / &@g) mean that the derivatives are calcul- 

ated for the generating solution (3.2), and U(i)! W(i) are functions, known for each step, 

e* g. U(l) = (W /w, W(l) = - (dR1 / c?Q. The solution of the linear inhomoge- 
neous system (3.4) can,be constructed using the method of varying the integration con- 
stants, and is based on the fundamental system of solutions X of the corresponding ho- 

mogeneous system. Taking into account the Initial and the boundary conditions, we ar- 
rive at the expressions which yield a unique solution of the boundary value problem 
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Here 1 denotes a unit n x n-matrix, E and v are column vectors, and all functions 
appearing here also depend on the real parameters h, &, Cc and c,,. It must be noted 
that the functions &~(i, and &ht~ depend on 0, and are therefore slow. In constmct- 
ing the required solution &k+l), q(ktl) we can utilize the recurrence procedure of the 
method of consecutive approximations in the powers of e. 

2”. We use (2.3) to construct the solution of the ( k + 1)- th approximation to 
the initial system (2.1) k k 

a(k+i) = &I) + x &‘h, P(ktl) = q(1) f 2 e’6pi (3.6) 
i-l i=l 

The functions 6a(i) and &.+) which depend on $, 0, 0~~ h, ct and c,, can be deter- 
mined successively by substituting (3.6) into (2.3) and equating the coefficientsof like 
powers in 8, e. g, 

&) = Q,, - (do, / 371, &P (1) = 6q(u + (df&J i %I (3.7) 

As the result, we ohtain the following approximate expressions for the functions a andp : 

a(ktl) = &I) + -Q$k,($', 0, %, h, cc, '%, d, a(k+l) 6%) = (3.3) 

CE + &A% (0,) 

P@+l> = ?I(,) + a&k) (9, 0, %, h, CEt en, a), (P(k+x) (%f’> = 

C, -i- EAPk (@I’> 

which represent, as we can see from (3.6) - (3.8), the sums of the smooth functions and 
of the small oscillatory terms of the order of E. 

3”. The constants of integration cc ano c, must be chosen in such a manner, that 
the functions o(k+l) and P(k+if satisfy the prescribed initial and boundary conditions . 
Since the right-hand sides of the expressions (3.8) are smooth in cE and c,,, we have 

k k 

cc = a0 + x e%q(;), c,, = PT + 2 @&(i) 
i=l i=l 

(3.9) 

The upon coefficients 8q (if and &,, uj depend on the parameters h and f& , and 
periodically OR 9s and 3tT. They can be found by substituting (3.9) into (3.8), expand- 
ing with respect to e which appears in these expressions explicitly, and equating terms 
of like powers in E. In particular, we have 

(3.10) 

Here the functions &I1 and ?ju) have the form (3.2), with cE = a, and C, = PT. 

As the xesult, we obtain the following expressions for CC and c, 

cc = a, + i?&(k) @,*T, eT, e), '+ = Px + e&:(r) (h'#!r, cfz', &) c3* I11 

where Ace (Q and AC,(~) are periodic in gT , This dependence on the known para- 
meters 8, and $sis not shown. Substitution of (3.11) into the expressions (3.8) for ~(k-+~) 
and P(k+l) yields 
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cu)* (0, &I h) + eAa(k,* (‘#t 0, ‘$2’9 eT* h d 

q(l)* (0, OT, h> + eAp (r)* (‘), 8, ‘#T, OT, k, &) 
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(3.12) 

where 
E(1) = E(i) (eV OT., ‘* ‘0, PT), %)* = q(l) ((8 eT? h, aO, PT) (3.13) 

&cj*leo = APtkj* leT = 0 

The functions Au(k)* and Aplkj* are obtained by discarding terms of the order of ek+l 

and higher in (3. a). Approximate computation of the coefficients cr and c, can be car- 
ried out using either the method of consecutive approximations in the powers of 8 , or 

the method of tangents. 

Thus we obtain the ( k + 1 )-th approximations for the functions a and p , satisfying 
the given initial and boundary conditions. We estimate the nearness of the solution con- 

structed for the boundary value problem (2.1) with $T and h given, using the difference 

equations AU = u -- u(;+~) and AP - P - I+;+~) Cl1 

dAa 
- = -- E (a) Au -- E (3) Ap + eR, + eF,, 4u lJlo = 0 (3.14) 

AP IJ’T = 0 

Under the assumption adopted in Sect, 2, the solution (3.14) of the boundary value prob- 

lem vanishes if R, = R, E 0. Introducing the corresponding column vectors g, r 
and 9, and the square matrix B , we can write the system (3.14) in the form 

dg ! d$ = eBg + er + ecp, r = 0 (ektl), ry = 0 (I eg 1 + gz) (3.15) 

Using the transformation 

g = g<,, + a [J (B - (&) d$‘k(i, (3.16) 

which is almost an identity and in which the integration is carried out only over the ex- 

plicit argument J3, we reduce the system (3.15) to the form 

dgw / d’b = e GO g(l) + &r(l) 

(P(l) = 0 (I sg0, I + &lj2) 

Since the functions rcl) and (P(Q obtained from 
we omit tilem from here. 

It can be shown that g(l) = 0 (qIj) for $ E 

+ &Wl), rtl) = 0 (ek+') (3.17) 

r and cp , respectively, are unwieldy , 

[&,, $T], $T - 8-l. In fact, the sOhi_ 
tion of the boundary value problem for the system (3.1’7) can be found by solving a set 

of 2n integral equations (see (3.5)) 

(3.18) 

Here the vector Z(r) is determined similarly as b(i) in (3.5), and its components represent 
linear functionals of the vector (rclj + C&I))- We construct the solution of the system 
(3.18), using the method of consecutive approximations in the powers of e . When 1 e 1 
is sufficiently small, the nonlinear integral operator of gel) (3.18) has aunique fixed point, 
i.e. the consecutive approximations converge uniformly to a unique solution gcljt = 
0 (r& [14]. Then from (3.16) it follows that Au, Ap N ektl for given $T - e-l 
and h. 
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4”. The parameterg~ and function I# (t, h, E) can be found with an error of or- 
der 0 (8%) , using the formulas (2.2). The relation for determining the quantity 8 (t, 

h, E) in the ( k + 1 )-th approximation assumes the following form after substituting 

the expressions (3.12), (3.13) and discarding the terms of higher order of smallness in E: 
s(k+l) 

s [ 1 + EAY’,,, 
( 
$ , 8, %k+i) 

e 9 %“(k+l)r h 8 

% )I 

de 
T CT (3.19) 
o (W 

The quantities 0 and OT are obtained with an error of 0 (ak+l). When k> 1 , we have 

AT(r) = ;g; eiyi (4, 0, $2’(k), @Vk+l)r h) (3.20) 

As was said before, the dependence of \I, and gT is of periodic character. Substitution 

of (3.20) into (3.19) carried out at z = L, yields the following expression for the para- 

meter h(k+l) : %‘(ktl) 

M(k+l) (h’(k+l), h, El = 
s 

(1 + eAQ,)+ = L (3.21) 
80 o (Co,) 

The solution of the transcendental equation (3.21) is obtained in the form of an asymp- 

totic expansion 

hk+l) (h E) = h) (h) + %jl Ei6eTti, = h-(1) + E&(k) (9.22) 

In the first approximation, the parameter & is found from Eq. (3.21) with E = 0 : 

M(i) (OT(i), h) = 0. bet the solution OTti) (h) exist and i3MC1, / L&-(i) # 0 for this 

particular value of the root. Then the increment 68Tt1j is given by 

aiM(l) se 
‘T(l) 

aeT(~) 
T(1) = - s (w(,,) (0, hco) + 6eT(1)r hlj7 h) x (3.23) 

00 
d0 

0 (E;,) @0,(,)1 h)) 

The above expression certainly has a solution, since it contains a bounded periodic time- 

tion 68TC1) in its right-hand side. If 6&(i) is a simple root of (3.23), then all coeffici- 

ents of 60TCi, are found successively from linear equations of the form 

where 6i (h) are known functions of h, e. g. 

The approximate solution OCk+i) of (3.19) can be constructed in a similar manner. 
In particular, the first approximation 6~~) (‘d, h) is obtained uniquely from (3.19) with 
E = 0. The remaining coefficients are calculated consecutively, e. g. 
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Thus,we find that for a given value of the parameter h , the admissible solutions of the 

boundary value problem (1. l), (1.3), (1.4), (1.6), (1. ‘7) in the ( k + 1 )-th approxima- 
tion are constructed in the form of (3.12) in which the values obtained for 8r+r (t, h, 

a) and &(k+i) (h, a) have been substituted. 

5’. The parameter h must satisfy the condition of transversality for the variable 
q (1.7), and its value must be computed with the accuracy of N .a* +I in order that 
the degree of accuracy indicated in the above relations is really attained. For the essen- 
tially nonlinear system considered here, it was established in [Z] that r?qT / ah - E-l,, 

therefore the value of h saught is determined (nonuniquely) from-the equation h = 
- AI (U%(r+I), *T(k), PT, 0, E), Since the error -Ek in determining $T can be com- 
pensated by varying the value of h by the amount -ak+i which represents the admis- 

sible error of the computation. Further, it was shown in [2] that a root of the first appro- 

ximation equation exists equal to hl,, = - (AI) (&(I), PT, 0, 0). If this root is 
simple, then at a sufficiently small \ E 1 the initial equation admits a discrete set of roots 

{h}. As a 3 0, these roots fill a certain continuous interval [h,, h,l which includes 

the point hC1, (see Fig. 1). 

‘Fig. 1 Fig, 2 

The ( k + l)-th order approximate solution of the problem of optimal control (1. l), 

(1.2) consists now of choosing such a value h* E {h} in the s-neighborhood of the 

point htIj E [h,, h,], that the functional (1.2) computed with an error of order Ektl 
reaches a minimum 

Jg+r) [hl = oiT(k+i) --t min h= {h} (3.24) 

Figure 2 depicts a typical form of the function J(k+l) [hl in the neighborhood ofalocal 
minimum. Substituting the expressions obtained in (1.6), we construct the approximate 
control law 

r&+1) = v (a, $7 pik+l), @k+lh ') (3.25) 

All the above arguments are formulated in the following assertion. 
Theorem. Let the following conditions hold. 
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1) The problem of optimal control (1. l), (1.2) has a unique solution belonging to the 
admissible region for 0 < 1 E ) < .Q. 

2) The right-hand sides of the system (2.1) possess continuous partial derivatives with 

respect to a, p and E , of up to the ( k + 1 )-th order. 
3) The boundary value problem (2.1) admits a unique solution, and the boundary va- 

lue problem of the first approximation has the property of stability described insect. 3, 

1”. 
4) The condition of “rapid oscillation” is fulfilled in the first approximation: deTll) 

(h(,Y) / ah # 0. 
Then the functions (3.12) yield a solution of the problem of optimal control(l.l),( 1.2) 

with an error of the order 0 (@+l) in the time interval T - t, - L8-l in terms of 

the slow variable a and the functional J. The approximate optimal control and the 

minimum value of the functional have the form (3.25) and (3.24), respectively . 
It must be noted that the method developed here can be used to solve other problems 

of optimal control by slow variables. Such a case occurs when the system (1.1) has to 
be transferred to a smooth set independent of the rapid variable, at. some fixed instant 

oftime t = T-8-l. 
The author thanks F. L. Chernous’ko for the interest shown and for valuable comments. 
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The problem of optimal stabilization is solved for controlled linear systems 
with white noise. The optimal solution is obtained by the method of success- 

ive approximations each of which represents the optimal solution of the rela- 
ted determinate problem. Necessary and sufficient conditions of stabilizabil- 

ity are given, 

1. Formulation and tranrformatfon of the problem. Consider asto- 
chastic controlled system of the form k 

+=(A +&r++(b+&+ (1.1) 
I-=1 ?.=I 

Here 5 is an n-dimensional phase coordinate vector, u is the scalar control, A and 0;. 
are constant ( It X n )- matrices, b and qr are constant n-vectors, E,’ (t) (r = 1, . , ., 
k) denote the noise present in the object and q’r (t) (r = 1, . . ., m) is the noisepre- 

sent in the control charmeL In addition, all g,. (t) and qr (t) are standard Wiener pro- 
cesses independent within the set. 

Let us consider a problem of optimal stabilization [l - 51 of the system (1.1) with the 
quality criterion 

I(u) = MT [s*Gz + hfP] at, A>0 (1.2) 

where G is a positive definite ( n i n )-matrix (G > 0). 
If the Bellman function associated with the problem (1. l), (1.2) is sought as a positive 

definite quadratic form x*Mx, the matrix M > 0 satisfies the equation 

A*M + MA + k o,*Mo, - A;;;j = - G (1.3) 

+=1 

Cp (M) = jl ‘~r*Mq+. 

and the optimal control is given by the formula 

ua (5) = - b*Mxl(h + cp (Ml) 

Following [3, 41, we perform the following change of variables in (1.3) : 

D = Ml@ + IP (W) 
This yields the system 

(1.4) 

(1.5) 


